Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Front Med (Lausanne) ; 11: 1334524, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38585148

RESUMO

Background: Vitamin D is a crucial fat-soluble vitamin that has garnered significant attention due to its potential impact on respiratory health. It is noteworthy that many patients with chronic obstructive pulmonary disease (COPD) often experience deficiencies or insufficiencies of vitamin D. To address this issue, our retrospective study aimed to explore the potential association between serum 25-hydroxyvitamin D concentration and the prognoses of COPD patients in the Intensive Care Unit (ICU). Methods: This study utilised data from the Medical Information Marketplace in Intensive Care IV (MIMIC-IV), a database of patients admitted to the Intensive Care Unit at Beth Israel Deaconess Medical Center (BIDMC) in the United States of America, with a focus on patients with a diagnosis of COPD. These patients were categorized into two groups: those who received vitamin D supplementation during their ICU stay and those who did not. We assessed in-hospital mortality and ICU mortality outcomes. Our analysis involved various analytical tools, including Kaplan-Meier survival curves, Cox proportional risk regression models, and subgroup analyses, to investigate the relationship between vitamin D supplementation and these outcomes. Additionally, we employed propensity-score matching (PSM) to enhance the reliability of our findings. Results: The study included a total of 3,203 COPD patients, with 587 in the vitamin D group and 2,616 in the no-vitamin D group. The Kaplan-Meier survival curve demonstrated a significant difference in survival probability between the two groups. After adjusting for potential confounders using Cox regression models, the vitamin D group exhibited a substantially lower risk of in-hospital and ICU mortalities compared to the no-vitamin D group. The hazard ratios for in-hospital and ICU mortalities in the vitamin D group were 1.7 (95% CI: 1.3, 2.3) and 1.8 (95% CI: 1.2, 2.6), respectively. Propensity-score matching (PSM) estimation yielded consistent results. Furthermore, in the subgroup analysis, female patients who received vitamin D supplementation showed a reduced risk of in-hospital mortality. Conclusion: The study suggests that vitamin D supplementation may be linked to a reduction in in-hospital and ICU mortalities among COPD patients in the ICU. Of particular note is the potential benefit observed in terms of in-hospital mortality, especially for female patients.

2.
Front Med (Lausanne) ; 10: 1271060, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38076263

RESUMO

Background: Vitamin D plays a critical role in the regulation of multiple physiological pathways. Vitamin D deficiency may be a risk factor for life-threatening clinical conditions. Several studies have found that vitamin D supplementation in critically ill patients improves prognosis. The purpose of this study was to determine the association between vitamin D and the prognosis of patients with acute respiratory failure (ARF). Methods: In this retrospective cohort study, we collected clinical information of ARF patients from the Medical Information Mart for Intensive Care IV (MIMIC-IV) version 2.0 database. The outcome of this study was in-hospital mortality, intensive care unit (ICU) mortality. Patients were divided into the no-vitamin D and vitamin D groups according to whether they received supplementation or not. The correlation between vitamin D and outcome was examined using Kaplan-Meier (KM) survival curves, Cox proportional risk regression models and subgroup analyses. Propensity-score matching (PSM) was used to ensure the robustness of our findings. Results: The study finally included 7,994 patients with ARF, comprising 6,926 and 1,068 in the no-vitamin D and vitamin D groups, respectively. The Kaplan-Meier survival curve indicated a significant difference in survival probability between the two groups. After adjustment for a series of confounders, the multivariate Cox proportional hazards models showed that the hazard ratio (95% confidence interval) values for in-hospital and ICU mortality in the no-vitamin D group were 1.67 (1.45, 1.93) and 1.64 (1.36, 1.98), respectively. The results of propensity score-matched (PSM) analysis were consistent with the original population. In the subgroup analysis, Vitamin D supplementation was associated with lower in-hospital mortality in patients with higher clinical scores (SOFA score ≥ 8, OASIS ≥ 38). Conclusion: Our study concluded that Vitamin D supplementation may reduce in-hospital and ICU mortality in patients with ARF in the ICU. There may be a beneficial effect on in-hospital mortality in patients with higher clinical scores. Additional randomized controlled trials are needed to follow up to confirm the relationship between vitamin D supplementation and ARF.

3.
Zhongguo Zhong Yao Za Zhi ; 48(20): 5487-5497, 2023 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-38114141

RESUMO

The leaves of sea buckthorn(Hippophae rhamnoides), considered as common food raw materials, have records of medicinal use and diverse pharmacological activities, showing a potential medicinal value. However, the active substances in the sea buckthorn leaves and their mechanisms of action remain unclear. In addition, due to the extensive source and large variety variations, the quality evaluation criteria of sea buckthorn leaves remain to be developed. To solve the problems, this study predicted the main active components, core targets, key pathways, and potential pharmacological effects of sea buckthorn leaves by network pharmacology and molecular docking. Furthermore, ultra-performance liquid chromatography with diode-array detection(UPLC-DAD) was employed to determine the content of active components and establish the chemical fingerprint, on the basis of which the quality markers of sea buckthorn leaves were predicted and then verified by the enzyme activity inhibition method. The results indicated that sea buckthorn leaves had potential therapeutic effects on a variety of digestive tract diseases, metabolic diseases, tumors, and autoimmune diseases, which were consistent with the ancient records and the results of modern pharmacological studies. The core targets of sea buckthorn leaves included PTPN11, AKT1, PIK3R1, ESR1, and SRC, which were mainly involved in the PI3K-AKT, MAPK, and HIF-1 signaling pathways. In conclusion, the active components of sea buckthorn leaves are associated with the rich flavonoids and tannins, among which quercitrin, narcissoside, and ellagic acid can be used as the quality markers of sea buckthorn leaves. The findings provide a reference for the quality control and further development and utilization of sea buckthorn leaves as medicinal materials.


Assuntos
Hippophae , Hippophae/química , Farmacologia em Rede , Simulação de Acoplamento Molecular , Fosfatidilinositol 3-Quinases/metabolismo , Flavonoides/análise , Frutas/química
4.
Molecules ; 28(21)2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37959870

RESUMO

Astragalus membranaceus is a traditional Chinese medicine derived from the roots of Astragalus membranaceus (Fisch.) Bge., which has the same medicinal and edible uses in China. It is also widely used in daily food, and its pharmacological effects mainly include antioxidant effects, vascular softening effects, etc. Currently, it is increasingly widely used in the prevention of hypertension, cerebral ischemia, and stroke in China. Formononetin and its glucopyranoside (ononin) are both important components of Astragalus membranaceuss and may play important roles in the treatment of cardiovascular diseases (CVDs). This study conducted metabolic studies using formononectin and its glucopyranoside (ononin), including a combination of the in vitro metabolism of Formonetin using rat liver S9 and the in vivo metabolism of ononin administered orally to rats. Five metabolites (Sm2, 7, 9, 10, and 12) were obtained from the solution incubated with formononetin and rat hepatic S9 fraction using chromatographic methods. The structures of the five metabolites were elucidated as (Sm2)6,7,4'-trihydroxy-isoflavonoid; (Sm7)7,4'-dihydroxy-isoflavonoid; (Sm9)7,8,4'-trihydroxy-isoflavonoid; (Sm10)7,8,-dihydroxy-4'-methoxy-isoflavonoid; and (Sm12)6,7-dihydroxy-4'-methoxy- isoflavonoid on the basis of UV, NMR, and MS data. Totally, 14 metabolites were identified via HPLC-DAD-ESI-IT-TOF-MSn analysis, from which the formononetin was incubated with rat hepatic S9 fraction, and the main metabolic pathways were hydroxylation, demethylation, and glycosylation. Then, 21 metabolites were identified via HPLC-DAD-ESI-IT-TOF-MSn analysis from the urine samples from SD rats to which ononin was orally administered, and the main metabolic pathways were glucuronidation, hydroxylation, demethylation, and sulfonation. The main difference between the in vitro metabolism of formononetin and the in vivo metabolism of ononin is that ononin undergoes deglycemic transformation into Formonetin in the rat intestine, while Formonetin is absorbed into the bloodstream for metabolism, and the metabolic products also produce combined metabolites during in vivo metabolism. The six metabolites obtained from the aforementioned separation indicate the primary forms of formononetin metabolism, and due to their higher contents of similar isoflavone metabolites, they are considered the main active compounds that are responsible for pharmacological effects. To investigate the metabolites of the active ingredients of formononetin in the rat liver S9 system, network pharmacology was used to evaluate the cardiovascular disease (CVD) activities of the six primary metabolites that were structurally identified. Additionally, the macromolecular docking results of six main components and two core targets (HSP90AA1 and SRC) related to CVD showed that formononetin and its main metabolites, Sm10 and Sm12, may have roles in CVD treatment due to their strong binding activities with the HSP90AA1 receptor, while the Sm7 metabolite may have a role in CVD treatment due to its strong binding activity with the SRC receptor.


Assuntos
Doenças Cardiovasculares , Medicamentos de Ervas Chinesas , Isoflavonas , Ratos , Animais , Ratos Sprague-Dawley , Medicamentos de Ervas Chinesas/química , Farmacologia em Rede , Isoflavonas/química , Cromatografia Líquida de Alta Pressão/métodos , Fígado/metabolismo
5.
Sci Adv ; 9(23): eadg4205, 2023 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-37294761

RESUMO

In the face of the alarming rise in global antimicrobial resistance, only a handful of novel antibiotics have been developed in recent decades, necessitating innovations in therapeutic strategies to fill the void of antibiotic discovery. Here, we established a screening platform mimicking the host milieu to select antibiotic adjuvants and found three catechol-type flavonoids-7,8-dihydroxyflavone, myricetin, and luteolin-prominently potentiating the efficacy of colistin. Further mechanistic analysis demonstrated that these flavonoids are able to disrupt bacterial iron homeostasis through converting ferric iron to ferrous form. The excessive intracellular ferrous iron modulated the membrane charge of bacteria via interfering the two-component system pmrA/pmrB, thereby promoting the colistin binding and subsequent membrane damage. The potentiation of these flavonoids was further confirmed in an in vivo infection model. Collectively, the current study provided three flavonoids as colistin adjuvant to replenish our arsenals for combating bacterial infections and shed the light on the bacterial iron signaling as a promising target for antibacterial therapies.


Assuntos
Proteínas de Bactérias , Colistina , Colistina/farmacologia , Proteínas de Bactérias/metabolismo , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Bactérias/metabolismo , Ferro , Homeostase
6.
Ecotoxicol Environ Saf ; 258: 114981, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37163907

RESUMO

There are increasing evidences that the biodilution effect can significantly reduce the biomagnification of mercury (Hg) in fish. The significant antagonism of selenium (Se) -Hg may have a potential diluting effect on Hg in fish; however, there is still lack of knowledge on such effect. To reveal the Se-Hg interaction and its role in controlling the biodilution effect of Hg, we investigated levels of Hg and Se in the muscle and liver of redlip mullet from Jiaozhou Bay, China, an urbanized semi-enclosed bay highly impacted by human activities. In general, Hg levels in fish muscle were significantly negatively correlated to the levels of Se in the liver and fish size for fish with a size of < 200 mm, indicating that the antagonistic effect of Se on Hg increased with fish growth. This relationship was not significant for fish with a size of > 200 mm, possibly because the normal metabolism of Hg in muscle was hindered by homeostatic regulation or physiological activities such as gonadal development in vivo. Furthermore, the molar ratio of Se in the liver/Hg in the muscle was significantly increasing with Se/Hg in the liver, suggesting that the liver may be the key organ involved in Se-Hg antagonism. Moreover, both ratios continued to decrease with increasing fish size, implying that the antagonistic effect weakens with fish growth. These results indicate that Hg sequestration by liver may be a key mechanism of Se-Hg antagonism in fish and function as a driver for the biodilution effect of Hg, especially at a size of < 200 mm. These findings are further supported by the established linear model of Se-Hg antagonism at different developmental stages.


Assuntos
Mercúrio , Selênio , Smegmamorpha , Poluentes Químicos da Água , Humanos , Animais , Mercúrio/análise , Selênio/metabolismo , Baías , Poluentes Químicos da Água/análise , Músculos/química , Peixes/metabolismo , Smegmamorpha/metabolismo , Fígado/metabolismo , China , Monitoramento Ambiental
7.
Viruses ; 15(5)2023 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-37243185

RESUMO

The rapid mutation and spread of SARS-CoV-2 variants recently, especially through the emerging variants Omicron BA5, BF7, XBB and BQ1, necessitate the development of universal vaccines to provide broad spectrum protection against variants. For the SARS-CoV-2 universal recombinant protein vaccines, an effective approach is necessary to design broad-spectrum antigens and combine them with novel adjuvants that can induce high immunogenicity. In this study, we designed a novel targeted retinoic acid-inducible gene-I (RIG-I) receptor 5'triphosphate double strain RNA (5'PPP dsRNA)-based vaccine adjuvant (named AT149) and combined it with the SARS-CoV-2 Delta and Omicron chimeric RBD-dimer recombinant protein (D-O RBD) to immunize mice. The results showed that AT149 activated the P65 NF-κB signaling pathway, which subsequently activated the interferon signal pathway by targeting the RIG-I receptor. The D-O RBD + AT149 and D-O RBD + aluminum hydroxide adjuvant (Al) + AT149 groups showed elevated levels of neutralizing antibodies against the authentic Delta variant, and Omicron subvariants, BA1, BA5, and BF7, pseudovirus BQ1.1, and XBB compared with D-O RBD + Al and D-O RBD + Al + CpG7909/Poly (I:C) groups at 14 d after the second immunization, respectively. In addition, D-O RBD + AT149 and D-O RBD + Al + AT149 groups presented higher levels of the T-cell-secreted IFN-γ immune response. Overall, we designed a novel targeted RIG-I receptor 5'PPP dsRNA-based vaccine adjuvant to significantly improve the immunogenicity and broad spectrum of the SARS-CoV-2 recombinant protein vaccine.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Animais , Camundongos , Adjuvantes de Vacinas , SARS-CoV-2/genética , COVID-19/prevenção & controle , Adjuvantes Imunológicos , Sistema ABO de Grupos Sanguíneos , Anticorpos Neutralizantes , Proteínas Recombinantes/genética , Anticorpos Antivirais , Glicoproteína da Espícula de Coronavírus
8.
Toxins (Basel) ; 15(4)2023 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-37104221

RESUMO

Jellyfish stings are the most common marine animal injuries worldwide, with approximately 150 million envenomation cases annually, and the victims may suffer from severe pain, itching, swelling, inflammation, arrhythmias, cardiac failure, or even death. Consequently, identification of effective first aid reagents for jellyfish envenoming is urgently needed. Here, we found that the polyphenol epigallocatechin-3-gallate (EGCG) markedly antagonized the hemolytic toxicity, proteolytic activity, and cardiomyocyte toxicity of the jellyfish Nemopilema nomurai venom in vitro and could prevent and treat systemic envenoming caused by N. nomurai venom in vivo. Moreover, EGCG is a natural plant active ingredient and widely used as a food additive without toxic side effects. Hence, we suppose that EGCG might be an effective antagonist against systemic envenoming induced by jellyfish venom.


Assuntos
Catequina , Venenos de Cnidários , Cifozoários , Animais , Catequina/farmacologia , Cnidários , Venenos de Cnidários/toxicidade
9.
Chin J Nat Med ; 21(4): 292-297, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37120247

RESUMO

Five new flavonoid derivatives, cajavolubones A-E (1-5), along with six known analogues (6-11) were isolated from Cajanus volubilis, and their structures were elucidated by spectroscopic analysis and quantum chemical calculations. Cajavolubones A and B (1 and 2) were identified as two geranylated chalcones. Cajavolubone C (3) was a prenylated flavone, while cajavolubones D and E (4 and 5) were two prenylated isoflavanones. Compounds 3, 8, 9 and 11 displayed cytotoxicity against HCT-116 cancer cell line.


Assuntos
Cajanus , Chalconas , Flavonoides/farmacologia , Flavonoides/química , Estrutura Molecular , Chalconas/farmacologia , Chalconas/química
10.
Front Immunol ; 14: 1063018, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36969240

RESUMO

Background: Autophagy in osteoarthritis (OA) has become an active area of research with substantial value and potential. Nevertheless, few bibliometric studies have systematically analyzed the available research in the field. The main goal of this study was to map the available literature on the role of autophagy in OA and identify global research hotspots and trends. Methods: The Web of Science Core Collection and Scopus databases were interrogated for studies of autophagy in OA published between 2004 and 2022. Microsoft Excel, VOSviewer and CiteSpace software were used to analyze and visualize the number of publications and associated citations, and reveal global research hotspots and trends in the autophagy in OA field. Results: 732 outputs published by 329 institutions from 55 countries/regions were included in this study. From 2004 to 2022, the number of publications increased. China produced the most publications (n=456), prior to the USA (n=115), South Korea (n=33), and Japan (n=27). Scripps Research Institute (n=26) was the most productive institution. Martin Lotz (n=30) was the highest output author, while Caramés B (n=302) was the highest output author. Osteoarthritis and Cartilage was the most prolific and most co-cited journal. Currently, the autophagy in OA research hotspots include chondrocyte, transforming growth factor beta 1 (TGF-ß1), inflammatory response, stress, and mitophagy. The emerging research trends in this field are AMPK, macrophage, senescence, apoptosis, tougu xiaotong capsule (TXC), green tea extract, rapamycin, and dexamethasone. Novel drugs targeting specific molecule such as TGF-ß and AMPK have shown therapeutic potential but are still in the preclinical stage of development. Conclusions: Research on the role of autophagy in OA is flourishing. Martin Lotz, Beatriz Caramés, and Osteoarthritis and Cartilage have made outstanding contributions to the field. Prior studies of OA autophagy mainly focused on mechanisms underlying OA and autophagy, including AMPK, macrophages, TGF-ß1, inflammatory response, stress, and mitophagy. Emerging research trends, however, are centered around the relationship between autophagy, apoptosis, and senescence, as well as drug candidates such as TXC and green tea extract. The development of new targeted drugs that enhance or restore autophagic activity is a promising strategy for the treatment of OA.


Assuntos
Produtos Biológicos , Fator de Crescimento Transformador beta1 , Proteínas Quinases Ativadas por AMP , Autofagia , Antioxidantes , Bibliometria , Chá
11.
Viruses ; 14(9)2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-36146661

RESUMO

The research and development (R&D) of novel adjuvants is an effective measure for improving the immunogenicity of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) recombinant protein vaccine. Toward this end, we designed a novel single-stranded RNA-based adjuvant, L2, from the SARS-CoV-2 prototype genome. L2 could initiate retinoic acid-inducible gene-I signaling pathways to effectively activate the innate immunity. ZF2001, an aluminum hydroxide (Al) adjuvanted SARS-CoV-2 recombinant receptor binding domain (RBD) subunit vaccine with emergency use authorization in China, was used for comparison. L2, with adjuvant compatibility with RBD, elevated the antibody response to a level more than that achieved with Al, CpG 7909, or poly(I:C) as adjuvants in mice. L2 plus Al with composite adjuvant compatibility with RBD markedly improved the immunogenicity of ZF2001; in particular, neutralizing antibody titers increased by about 44-fold for Omicron, and the combination also induced higher levels of antibodies than CpG 7909/poly(I:C) plus Al in mice. Moreover, L2 and L2 plus Al effectively improved the Th1 immune response, rather than the Th2 immune response. Taken together, L2, used as an adjuvant, enhanced the immune response of the SARS-CoV-2 recombinant RBD protein vaccine in mice. These findings should provide a basis for the R&D of novel RNA-based adjuvants.


Assuntos
COVID-19 , Vacinas Virais , Adjuvantes Imunológicos , Hidróxido de Alumínio , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Camundongos , Camundongos Endogâmicos BALB C , RNA , Proteínas Recombinantes/genética , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Tretinoína , Vacinas de Subunidades Antigênicas/genética , Vacinas Sintéticas/genética
12.
Artigo em Inglês | MEDLINE | ID: mdl-35958905

RESUMO

Objective: Osteoarthritis (OA) is the most common degenerative joint disorder and a leading cause of disability. A previous randomized controlled trial has shown that Gubitong (GBT) recipe can improve OA-related symptoms and articular function without noticeable side effects. However, the underlying mechanisms remain unclear. This study aims to explore the therapeutic mechanisms of the GBT recipe for OA through in vivo and in vitro experiments. Methods: Rats of the OA model were established by Hulth surgery and intervened with the GBT recipe and then were subjected to pathological assessment of the cartilage. Matrix metalloproteinase 13 (MMP-13) expression in cartilage tissues was assessed by immunohistochemical staining. Chondrocytes were isolated from sucking rats and stimulated with LPS to establish an in vitro model. After intervened by water extraction of the GBT recipe, the fluorescent signal of Mtphagy Dye and mitochondrial membrane potential (Δψm) were detected to determine the states of mitophagy and mitochondrial dynamics of chondrocytes in vitro, respectively. Western blot test was used to detect levels of proteins related to catabolism of the cartilage matrix, mitophagy, and PI3K/AKT pathway. Results: In in vivo experiments, the GBT recipe can effectively inhibit the cartilage degeneration of chondrocytes in OA rats, as well as markedly suppress the expression of MMP-13. In vitro experiments on LPS-induced chondrocytes exhibited increase in mitochondrial depolarization and excessive mitophagy, and the GBT recipe can alleviate these changes. LPS-stimulated chondrocytes showed increases in MMP-13, PINK1, and Parkin in cell lysates and LC3II/LC3I ratio in the mitochondrial fraction, and the GBT recipe can inhibit these increases in a dose-dependent manner. Moreover, the GBT recipe can attenuate the abnormal activation of PI3K/AKT pathway induced by LPS. Conclusion: The GBT recipe exhibits chondroprotective effects through inhibiting excessive mitophagy of chondrocytes, which may be associated with its inhibitory effect on the abnormal activation of PI3K/AKT pathway.

13.
Environ Sci Pollut Res Int ; 29(59): 89235-89244, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35849227

RESUMO

Catalytic fast pyrolysis (CFP) for biomass treatment is a research hotspot but there is little information about the difference between the in situ and ex situ methods. In present work, the Ni-Fe/CaO-Al2O3 catalysts with different Ni/Fe ratios have been synthesized by coprecipitation method, and the product distribution about the Chinese herb residue (CHR) catalytic fast pyrolysis by in situ and ex situ methods in a quartz tube reactor system has been investigated. The results show that the CFP pyrolysis would upgrade the quality of bio-oil but decrease the yields, no matter in situ or ex situ CFP process. During the in situ CFP process, heteroatoms may be absorbed by the catalyst support and cannot be transferred to the bio-oil, but the results of ex situ CFP are the opposite. In addition, the ex situ CFP reaction significantly increases the content of aromatic hydrocarbons. As to the gas products' distribution, the effect of Fe in catalysts to promote CH4 formation is reflected in in situ CFP process, while the promotion effect of H2 generation for Ni added in catalyst is mainly reflected in ex situ CFP process. However, due to the high reaction temperature (800 °C), the adsorption of CO2 by CaO support is not particularly significant. The possible mechanism of CHR in CFP process has also been summarized for understanding the process of in situ and ex situ CFP, and this study may provide a choice or reference for CHR treatment.


Assuntos
Óleos de Plantas , Pirólise , Polifenóis , Catálise , Biomassa , Temperatura Alta , China , Biocombustíveis
14.
Adv Healthc Mater ; 11(14): e2200255, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35536883

RESUMO

Phototherapy is an important strategy to inhibit tumor growth and activate antitumor immunity. However, the effect of photothermal/photodynamic therapy (PTT/PDT) is restricted by limited tumor penetration depth and unsatisfactory potentiation of antitumor immunity. Here, a near-infrared (NIR)-driven nanomotor is constructed with a mesoporous silicon nanoparticle (MSN) as the core, end-capped with Antheraea pernyi silk fibroin (ApSF) comprising arginine-glycine-aspartate (RGD) tripeptides. Upon NIR irradiation, the resulting ApSF-coated MSNs (DIMs) loading with photosensitizers (ICG derivatives, IDs) and chemotherapeutic drugs (doxorubicin, Dox) can efficiently penetrate into the internal tumor tissues and achieve effective phototherapy. Combined with chemotherapy, a triple-modal treatment (PTT, PDT, and chemotherapy) approach is developed to induce the immunogenic cell death of tumor cells and to accelerate the release of damage-associated molecular patterns. In vivo results suggest that DIMs can promote the maturation of dendritic cells and surge the number of infiltrated immune cells. Meanwhile, DIMs can polarize macrophages from M2 to M1 phenotypes and reduce the percentages of immunosuppressive Tregs, which reverse the immunosuppressive tumor microenvironment and activate systemic antitumor immunity. By achieving synergistic effects on the tumor inhibition and the antitumor immunity activation, DIMs show great promise as new nanoplatforms to treat metastatic breast cancer.


Assuntos
Nanopartículas , Neoplasias , Fotoquimioterapia , Linhagem Celular Tumoral , Doxorrubicina/química , Humanos , Verde de Indocianina/química , Nanopartículas/química , Neoplasias/tratamento farmacológico , Fármacos Fotossensibilizantes/química , Fototerapia/métodos , Microambiente Tumoral
15.
Int J Biol Macromol ; 209(Pt A): 356-366, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35405152

RESUMO

Both tea polysaccharides and selenium have certain remission potential for ulcerative colitis (UC), but few reports focused on natural selenium-containing tea polysaccharides. The purpose of this study was to isolate a selenium-containing tea polysaccharide (ASeTP) and determine its structure and effects on UC. Results showed that ASeTP was primarily composed of three purified, ß-pyranoside-linked, protein-binding polysaccharides (SeTP-1, SeTP-2, and SeTP-3) with SeOC, OSeO, and SeO linkages. Specifically, SeTP-1 was a neutral heteropolysaccharide principally composed of mannose, glucose, galactose, xylose, and arabinose, while SeTP-2 and SeTP-3 were acidic heteropolysaccharides due to the existence of glucuronic acid. ASeTP effectively alleviated the symptoms of weight loss, colon shortens, and disease activity index scores increase in dextran sodium sulfate (DSS)-induced colitis mice. ASeTP attenuated the histological damage and maintained the colonic mucosal barrier via up-regulating the expression of occludin, claudin-1, and zona occludens-1 (ZO-1). ASeTP suppressed the levels of pro-inflammatory cytokines and enhanced the antioxidant capacity of colon tissue. Besides, ASeTP beneficially increased the selenium content of the colon. Furthermore, ASeTP remodeled the gut microbiota by accelerating the proliferation of beneficial bacteria and inhibiting pathogenic microorganisms. Thus, ASeTP has the potential to be a functional food against colitis.


Assuntos
Colite Ulcerativa , Colite , Microbioma Gastrointestinal , Selênio , Animais , Colite/induzido quimicamente , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/microbiologia , Colo , Sulfato de Dextrana/efeitos adversos , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , Polissacarídeos/metabolismo , Selênio/metabolismo , Selênio/farmacologia , Chá/metabolismo
16.
Mol Pharm ; 19(12): 4538-4551, 2022 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-35311257

RESUMO

Multidrug resistance (MDR) is a major obstacle to effective cancer treatment. Therefore, developing effective approaches for overcoming the limitation of MDR in cancer therapy is very essential. Chemotherapy combined with photothermal therapy (PTT) is a potential therapeutic option against MDR. Herein, we developed a subcellular-targeted near-infrared (NIR)-responsive nanomedicine (Fe3O4@PDA-TPP/S2-PEG-hyd-DOX, abbreviated as Fe3O4-ATSPD) as a new photothermal agent with improved photothermal stability and efficiency. This system demonstrates high stability in blood circulation and can be accumulated at the tumor site by magnetic targeting enhanced permeability and retention effect (EPR). Near-infrared (NIR) irradiation at the tumor site generates a photothermal effect from the photosensitizer Fe3O4@PDA, leading to a dramatic decrease in mitochondrial membrane potential. Simultaneously, the conjugated drugs released under low pH condition in endosomes or lysosomes cause nucleus DNA damage and cell apoptosis. This subcellular-targeted NIR-responsive nanomedicine with efficient integration of diagnosis and therapy could significantly enhance MDR cancer treatment by combination of chemotherapy and PTT.


Assuntos
Nanopartículas , Neoplasias , Humanos , Terapia Fototérmica , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Nanomedicina , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Fototerapia
17.
Chin J Nat Med ; 20(2): 139-147, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35279241

RESUMO

Fourteen new geranyl phenyl ethers (1-14) along with three known compounds (15-17) were isolated from Illicium micranthum, and their structures were elucidated by comprehensive spectroscopic methods. Illimicranins A-H (1-8) were characterized as geranyl vanillin ethers, while 9 and 10 were dimethyl acetal derivatives. Illimicranins I and J (11 and 12) were rare geranyl isoeugenol ethers. Illimicranins K and L (13 and 14) represented the first example of geranyl guaiacylacetone ether and geranyl zingerone ether, respectively. Compounds 1, 2 and 15 exhibited anti-HBV (hepatitis B virus) activity against HBsAg (hepatitis B surface antigen) and HBeAg (hepatitis B e antigen) secretion, and HBV DNA replication.


Assuntos
Illicium , Antivirais/química , Antivirais/farmacologia , Antígenos de Superfície da Hepatite B , Antígenos E da Hepatite B , Illicium/química , Éteres Fenílicos
18.
Nat Commun ; 13(1): 676, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35115492

RESUMO

Ferroptosis is a nonapoptotic cell death process that requires cellular iron and the accumulation of lipid peroxides. In progressive rheumatoid arthritis (RA), synovial fibroblasts proliferate abnormally in the presence of reactive oxygen species (ROS) and elevated lipid oxidation. Here we show, using a collagen-induced arthritis (CIA) mouse model, that imidazole ketone erastin (IKE), a ferroptosis inducer, decreases fibroblast numbers in the synovium. Data from single-cell RNA sequencing further identify two groups of fibroblasts that have distinct susceptibility to IKE-induced ferroptosis, with the ferroptosis-resistant fibroblasts associated with an increased TNF-related transcriptome. Mechanistically, TNF signaling promotes cystine uptake and biosynthesis of glutathione (GSH) to protect fibroblasts from ferroptosis. Lastly, low dose IKE together with etanercept, a TNF antagonist, induce ferroptosis in fibroblasts and attenuate arthritis progression in the CIA model. Our results thus imply that the combination of TNF inhibitors and ferroptosis inducers may serve as a potential candidate for RA therapy.


Assuntos
Artrite Experimental/prevenção & controle , Artrite Reumatoide/prevenção & controle , Ferroptose/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Imidazóis/farmacologia , Cetonas/farmacologia , Piperazinas/farmacologia , Inibidores do Fator de Necrose Tumoral/farmacologia , Animais , Artrite Experimental/genética , Artrite Experimental/metabolismo , Artrite Reumatoide/genética , Artrite Reumatoide/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Quimioterapia Combinada , Etanercepte/farmacologia , Etanercepte/uso terapêutico , Fibroblastos/citologia , Fibroblastos/metabolismo , Glutationa/metabolismo , Humanos , Imidazóis/uso terapêutico , Cetonas/uso terapêutico , Peroxidação de Lipídeos/efeitos dos fármacos , Camundongos , Piperazinas/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Membrana Sinovial/citologia , Inibidores do Fator de Necrose Tumoral/uso terapêutico
19.
Zhongguo Zhong Yao Za Zhi ; 46(23): 6251-6260, 2021 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-34951252

RESUMO

Colorectal cancer is a malignancy with high mortality. Huangqin Tea(HQT) can exert potential preventive and therapeutic effects on colorectal cancer. Flavonoids are the main compounds in HQT, but the pharmacodynamic material basis and mechanism are unclear. Network pharmacology and molecular docking were used to predict and analyze the targets and signaling pathways of HQT in the prevention and treatment of colorectal cancer. The active components of flavonoids in HQT were searched and screened out by literature review and FAFDrugs4. The related targets of active components were predicted by SwissTargetPrediction, STITCH, and TCMSP. Colorectal cancer-related genes were collected from OMIM, TTD, and GeneCards. The common targets were obtained as the potential targets of HQT in the prevention and treatment of colorectal cancer. Metascape was used for GO function enrichment and KEGG pathway enrichment analyses. Cytoscape was used to construct the protein-protein interaction(PPI) network and "component-target-disease-pathway" network to obtained and analyze core targets and key components. AutoDock Vina was used for molecular docking verification of key components and core targets. The results showed that apigenin, luteolin, wogonin, and baicalein were presumedly the key active components in the prevention and treatment of colorectal cancer, and core targets included TP53, AKT1, VEGFA, PIK3 CA, and SRC. The key KEGG signaling pathways mainly involved PI3 K-AKT, AGE-RAGE, p53, NF-κB, Wnt, Hippo, and calcium signaling pathways. Further molecular docking results showed that four key components showed strong hydrogen bonding ability with the five core targets. This study preliminarily reveals the pharmacodynamic material basis and potential mechanism of HQT in the prevention and treatment of colorectal cancer and provides a theoretical and scientific basis for the application of HQT.


Assuntos
Neoplasias Colorretais , Medicamentos de Ervas Chinesas , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/prevenção & controle , Humanos , Simulação de Acoplamento Molecular , Farmacologia em Rede , Scutellaria baicalensis , Chá
20.
Chem Biodivers ; 18(12): e2100705, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34710267

RESUMO

Emerging evidence suggests that a high-fat diet (HFD) can influence endoplasmic reticulum (ER) stress and gut microbiota. Crataegi Fructus is a traditional Chinese herb widely used in formulas for dyspepsia, with Dashanzha Pill composed of raw Crataegi Fructus (DR) being a representative drug. Processing products of Crataegi Fructus, however, have a stronger pro-digestive effect, and we hypothesized that Dashanzha Pill composed of charred Crataegi Fructus (DC) is more effective. We found that the contents of glucose 1-phosphate and luteolin in DR and DC were substantially different via ultra-high performance liquid chromatography-hybrid quadrupole-Orbitrap high-resolution mass spectrometry. DC outperformed DR in improving histopathological changes, increasing gastrin and motilin, and decreasing vasoactive intestinal peptides in rats with HFD induced dyspepsia. Fecal microbiota analysis revealed that DC could restore the disturbed intestinal microbiota composition, including that of Bacteroides, Akkermansia, and Intestinimonas to normal levels. Furthermore, DC significantly reduced the mRNA and protein levels of glucose-regulated protein 78, protein kinase R-like ER kinase, and eukaryotic initiation factor 2α. Taken together, DC outperformed DR in relieving dyspepsia by regulating gut microbiota and alleviating ER stress.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Dispepsia/tratamento farmacológico , Frutas/química , Extratos Vegetais/farmacologia , Animais , Crataegus/química , Crataegus/metabolismo , Dieta Hiperlipídica , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/metabolismo , Dispepsia/induzido quimicamente , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Microbioma Gastrointestinal/efeitos dos fármacos , Masculino , Medicina Tradicional Chinesa , Extratos Vegetais/química , Extratos Vegetais/metabolismo , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA